Startseite » News »

Multimaterial-Bauteile: Forschungsprojekt Made-3D startet

Additive Fertigung komplexer Bauteile
Multimaterial-Bauteile: Forschungsprojekt Made-3D startet

Innerhalb des Projekts „Made-3D“ (Multi-Material Design using 3D Printing) wird untersucht, wie sich die Vorteile von Bauteilen aus kombinierten Werkstoffen in industrielle Anwendungen der Automobilindustrie sowie Luft- und Raumfahrt übertragen lassen. Die Universität Paderborn leitet das Projekt, das für die nächsten dreieinhalb Jahre mit rund 6,7 Millionen Euro im „Horizon Europe 2022“-Programm der Europäischen Union gefördert wird. Mit dabei ist auch das Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV.

Inhaltsverzeichnis
1. Auf die richtigen Werkstoffe kommt es an
2. Vorhersage der notwendigen Materialeigenschaften
3. Anwendungen für die Automobil-, Luft- und Raumfahrtindustrie
4. Nachhaltigkeit in der Produktion, Nutzung und beim Recycling
5. Die Rolle des Fraunhofer IGCV im Projekt
6. Über das Projekt Made-3D

Die nächste Entwicklungsstufe im Bereich des metallischen 3D-Drucks besteht in der Herstellung von Multimaterial-Bauteilen, bei denen zwei oder mehr Werkstoffe beliebig kombiniert werden können. Ein europaweites Forschungsteam, geleitet von der Universität Paderborn, will nun Industrieanwendungen für diese revolutionäre Technologie entwickeln. Additive Fertigung aus mehreren Werkstoffen mit unterschiedlichen physikalischen Eigenschaften soll die industriellen Möglichkeiten auf das nächste Level heben. Ziel ist es, eine noch nie dagewesene Gestaltungsfreiheit für hochkomplexe (Leicht-)Bauteile zu ermöglichen. Dafür entwickelt das Projektteam neue Multimaterial-Bauteile mit lokal zugeschnittenen mechanischen, elektrischen, thermischen und magnetischen Eigenschaften für Anwendungen in der Automobilindustrie, Luft- und Raumfahrt.

„Die Multimaterial-Fertigung durch 3D-Druck steckt derzeit noch in den Kinderschuhen. Die fehlenden Materialkombinationen sind die größte Herausforderung, die den Durchbruch dieser Technologie behindern. Durch das Projekt ‚Made-3D‘ soll sie einen großen Sprung nach vorne machen“, betont Projektkoordinator Prof. Dr. Thomas Tröster, Leiter der Fachgruppe Leichtbau im Automobil (LiA) sowie Vorsitzender des Instituts für Leichtbau mit Hybridsystemen (ILH) und des Instituts für Additive Fertigung (PIAF) der Universität Paderborn.

Auf die richtigen Werkstoffe kommt es an

Zwar lassen sich durch additive Fertigung Bauteile heutzutage fast grenzenlos individualisieren und verschiedene Funktionen in einem einzigen Druckprozess integrieren. Jedoch braucht es dafür geeignetes Material. Die bis dato verwendeten Werkstoffe genügen den vielschichtigen Anforderungen – etwa Biegsamkeit, Temperaturstabilität und magnetische Eigenschaften in einem Teil zu vereinen – aufgrund ihrer homogenen Materialeigenschaften allerdings nicht. Hinzu kommt, dass die Mehrheit der Stähle und Legierungen wegen Rissbildungen nicht gedruckt werden kann. Dieses Problem ist noch ausgeprägter, wenn zwei oder mehr Materialien additiv miteinander verbunden werden sollen.

Hier setzt das internationale Expertenteam an. Gemeinsam wollen sie die Leistung von Multimaterial-Bauteilen bedeutend steigern sowie Gewicht erheblich verringern, um neue Möglichkeiten des Leichtbaus zu schaffen. „Unser Ziel ist es, durch die Projektergebnisse eine erhöhte Prozesssicherheit und -geschwindigkeit in der additiven Multimaterial-Fertigung zu erreichen und damit diese innovative Technologie weiter zu industrialisieren“, betont Prof. Dr.-Ing. habil. Mirko Schaper, Inhaber Lehrstuhls für Werkstoffkunde (LWK) an der Universität Paderborn und Co-Leiter des Projekts.

Vorhersage der notwendigen Materialeigenschaften

Die Arbeit beginnt dabei noch vor dem Druck. „3D-Druck-Materialien werden bisher nahezu vollkommen empirisch durch eine Vielzahl von Experimenten entwickelt. Das ist nicht nur kostspielig, sondern auch zeitintensiv“, erklärt Schaper. Daher setzt das Team auf ein systematisches computerbasiertes Materialdesign. Das Besondere: Für den jeweiligen Anwendungsfall werden die gewünschten Werkstoffeigenschaften in Abhängigkeit von der chemischen Zusammensetzung berechnet und vorausgesagt. Für jeden Multimaterial-Kandidaten wird dann innerhalb von zwei bis drei Iterationen eine Materialkombination erstellt, die als Blaupause für vielzählige weitere Applikationen dienen kann. Der Einsatz von maschinellem Lernen in der Prozessentwicklung soll zu kürzeren Entwicklungszyklen führen und die Digitalisierung der Prozesskette vorantreiben.

Der Weg vom Pulver zum Bauteil führt dann über zwei Technologien des additiven Fertigens. Durch Selektives Laserschmelzen (engl.: Laser Powder Bed Fusion, kurz L-PBF) und Laserauftragschweißen (engl.: Direct Energy Deposition, kurz DED) werden die zerstäubten Multimaterial-Kombinationen lokal und gezielt verteilt in 3D gedruckt, sodass hochqualitative Bauteile entstehen.

Anwendungen für die Automobil-, Luft- und Raumfahrtindustrie

Das Projektteam testet die innovativen Ansätze in fünf Anwendungsfällen im Bereich der Automobil-, Luft- und Raumfahrtindustrie. Dabei sind die Ziele klar definiert: Durch die Verarbeitung verschiedener Materialien soll das Gewicht einzelner Teile um bis zu 50 Prozent im Vergleich zu derzeit verwendeten Komponenten reduziert werden – durch Materialersatz (Verwendung leichterer Metalle) und deren Herstellung durch AM (d. h. weniger Materialverbrauch und Individualisierbarkeit der Funktionen). Ganz konkret arbeiten sie u. a. daran, Antriebssysteme in der Luftfahrt leichter zu gestalten, um sowohl Kosten zu sparen als auch einen großen Schritt in Richtung Nachhaltigkeit zu machen. Außerdem wollen sie die Leistung von Elektromotoren durch den Einsatz von Materialkombinationen, die eine bessere Magnetplatzierung und Ausrichtung des magnetischen Flusses ermöglichen, optimieren. Die Projektergebnisse sollen später auf viele andere Sektoren, wie z. B. Gesundheit und Energie, übertragbar sein.

Nachhaltigkeit in der Produktion, Nutzung und beim Recycling

„Die Methode der additiven Fertigung ermöglicht erhebliche Energie- und Ressourceneinsparungen während der Produktion. Auch bei der Verwendung der Leichtbauteile, z. B. in Verkehrsmitteln, ist weniger Energie u. a. für die Beschleunigung erforderlich. Zudem testen wir verschiedene Verfahren im Hinblick auf die Trennungseffizienz der hybriden Bauteile, um Materialmischungen bestmöglich recyceln zu können. Durch unsere neuen Methoden sollen bis zu 99 Prozent des verwendeten Materials wiederaufbereitet werden können“, erklärt Tröster. 

Erste Projektergebnisse werden in sechs Monaten erwartet. (eve)


Die Rolle des Fraunhofer IGCV im Projekt

„Wir forschen intensiv an den Prozesstechniken der additiven Fertigungsverfahren entlang deren Prozessketten und sind damit einer der wichtigsten Wissensträger auf diesem Gebiet“, sagt Dr.-Ing. Georg Schlick, Leitung Abteilung „AM – Metall und Multimaterial“ am Fraunhofer IGCV. „Wir sind besonders erfahren darin, passende Methoden zu entwickeln – sei es zur Produktentwicklung additiv gefertigter Bauteile oder der Fabrikplanung zur industriellen Umsetzung unserer Erkenntnisse.“ Daher fällt dem Institut im Projekt „Made-3D“ folgende Rolle zu: Die Forschenden des Fraunhofer IGCV fertigen Probekörper und Demonstratoren aus Aluminium- und Kupferlegierungen an den institutseigenen Laserschmelz-Anlagen und prüfen, wie sich solche Materialverbünde hochqualitativ realisieren lassen. Zudem soll untersucht werden, wie sich die Multimaterial-AM-Prozesse verbessern lassen, sodass sie schneller, stabiler und mit weniger Pulververbrauch ablaufen. Auch die Frage, wie sich Pulver effizient wiederaufbereiten lässt, wird die Forschenden beschäftigen.


Über das Projekt Made-3D

„Made-3D“ (Multi-Material Design using 3D Printing) – so der Name des Projekts – wird für die nächsten dreieinhalb Jahre mit rund 6,7 Millionen Euro im „Horizon Europe 2022“-Programm der Europäischen Union gefördert. Das Konsortium, bestehend aus Forschungseinrichtungen, Marktführern der additiven Fertigung, Luft- und Raumfahrt, Automobiltechnik und Start-ups, bringt ein breites Spektrum internationaler Expertise mit: Projektpartner*innen sind neben der Universität Paderborn SLM Solutions, das Fraunhofer Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV (alle drei aus Deutschland), die Universität der Ägäis (Griechenland), f3nice (Italien), Exponential Technologies (Lettland), QuesTek Europe (Schweden), AVL List (Österreich), Skyrora (Großbritannien), Safran Additive Manufacturing Campus, French Alternative Energies and Atomic Energy Commission CEA (beide aus Frankreich), Amires (Tschechien) und das Swiss Centre for Electronics and Microtechnology CSEM (Schweiz).

Newsletter

Jetzt unseren Newsletter abonnieren

Alle Webinare & Webcasts

Webinare aller unserer Industrieseiten

Alle Whitepaper

Whitepaper aller unserer Industrieseiten


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de